Crash Course in C and assembly
(v.2006-08-04)

Zeljko Vrba

These notes are intended to serve as coding guidelines for the Operating Systems course at the
University of Oslo. The text focuses on subjects that students have most trouble with while coding

their solutions.

Introduction
Variables

Calling convention
Pointers.

Bit-fields

Arrays

Ring buffer
Linked lists
Bit-vector

Inline assembler
Memory operands.
Literature

© 00 3O Ui W N

—
o

—
—_
© © 00 00 OOy UL U = W N+

—
N}

1 Introduction

A word of warning: these notes are not a “cod-
ing cookbook”. There is very little code that
can be directly used in the projects, and the ex-
planations are often very brief and, for the inex-
perienced C programmer, insufficient for thor-
ough understanding of the matter at hand.

Rather, the reader should look upon these notes
as a guide for further study. The text presents
common problems and misunderstandings that
are encountered during correcting assignments.
The problems are pointed out on artificial ex-
amples and briefly explained. The readers are
expected to carefully study the examples and
references and invest much of their own effort.
Exercises are not mandatory; they are intended
just as “food for thought” to the reader.

The following are elementary guidelines for
students who don’t have the patience to read
(and understand!) the whole document.

e Code simplicity and correctness should
always be before performance. First make
it work, then make it work fast(er). To quote

D. E. Knuth: “Premature optimization is
the root of all evil (or at least most of it) in
programming.” You are graded for cor-
rectness, NOT performance! Leave all
optimizations for the competition.

e Do not do more than is required by the as-
signment. Always try to find out the min-
imum needed to correctly accomplish the
assignment task. Less code — less de-
bugging. Code for fun only after you have
completely implemented the assignment.

e Do not use inline assembly unless you abso-
lutely have to (and you don’t). If you still
think that you absolutely do need it, you are
probably trying to do something contrary to
the previous points.

e Use pointers instead of integers to deal with
memory addresses.

e Error-checking is important, especially
when writing an OS!

C language

The following sections describe some specifics of
the C language. First, we introduce some basic
facts.

HOSTED IMPLEMENTATION makes available all
library functions defined by the standard. Most
of these functions require some support from the
operating system, which is not available in our
OS. Therefore, in our programs, we are allowed
to use only what is available in the freestanding
implementation.

FREESTANDING IMPLEMENTATION makes avail-
able only functions and macros defined in a

subset of standard C headers. These are
<float.h>, <limits.h>, <stdarg.h>, <std-
def .h>, and (available only in C99) <stdint.h>.

The <stddef.h> header defines the following
constants and macros.

1. The null pointer constant NULL,

2. the size_t type which is an unsigned integer
type large enough to contain any size on the
given architecture (usually 32 bits on 32-bit
architectures), and

3. offsetof macro which is used to calculate
the offset of a particular member in a struc-
ture. Fxercise: Study in detail what the
offsetof macro does, and implement your
own.

2 Variables

2.1 STATIC VARIABLES static keyword is
used to declare function-scope variables whose
value persists across calls.* 2

2.2 AUTOMATIC VARIABLES are function-
scope variables (also sometimes called local) de-
clared without the static keyword are called
automatic variables.

EXAMPLE: STATIC VS. AUTOMATIC. In func-
tion £, local variable (x) is automatic, and vari-
able (y) is static.

void f(void)

{
int x = 1;
static int y = 3;

printf("%d %d\n", ++x, ++y);
}

The function £ () will on its first execution print
2 4, and on its second execution 2 5. Variable

x is initialized on each entry to £(), while y is
initialized only once, before the program starts
up. y is accessible only within the function f
and all changes to it persist across function calls
to £.

2.3 STORAGE ALLOCATION.

e The storage for automatic variables is auto-
matically allocated and initialized on each
function entry, and deallocated on function
exit. Automatic variables are usually stored
on the processor’s stack.®

e The storage for static variables is allocated
only once, at compilation time. They are
also initialized only once, before the main
function starts to run.

2.4 RECURSIVE FUNCTIONS. Each recursive
invocation of a recursive function will get a
freshly initialized copy of automatic variables.
Note that all recursive invocations of the func-
tion share the same (only!) copy of static vari-
ables.

2.5 LIFETIME. static variables exist as long
as the program is running. Automatic variables
exist only as long as the function they are de-
fined in has not returned. The latter point can
be a source of nearly impossible to find bugs,
which arise when a function returns pointer to
an automatic variable.

EXAMPLE: UNSAFE FUNCTION. When the un-
safe function returns, the x variable is deallo-
cated, so the caller receives a pointer pointing
to invalid data. FExercise: Why is the call to g
safe?

int *unsafe(void)

{
int x = 12;
g(&x); /* SAFE x/
return &x; /* !UNSAFE! x/
}

Variables can have function- or file-scope. This usage (the only described here) affects the variable’s storage class.

Another use of static is to influence the symbol linkage.

The C standard does not mention stack explicitly. It might not even exist on certain processor architectures. The
standard just specifies the semantics of automatic variables.

4

EXAMPLE: SAFE FUNCTION. The code listed
for the safe function is walid since the variable
x is static. This is a way to make a local static
variable visible outside of the function.

int *safe(void)
{
static int x =
return &x;

}

12;

3 Calling convention

This term refers to semantics and mechanism of
passing arguments to and returning values from
functions.*

3.1 FUNCTION-CALL SEMANTICS. In C there
are two basic rules:

1. All arguments are passed by value.
This means that a copy of the argument is
pushed onto the stack. Any changes made
to arguments within the function will not
be visible to its caller. Care should be taken
to distinguish between changing the pointer
and the value pointed to.

2. Array decays into pointer to the first element
instead of being copied.®

EXAMPLE: ARGUMENT-PASSING. Study the fol-
lowing code and explanation carefully, for it is

essential to understand the C language.

void f1(int x, int *y)

{
HHX; Y Ry
}
void f2(int *xz)
{
++*Z;
}
void g(void)
{
int al3] = {1, 2, 3 };

int x = 10, y = 11, *z = a+l;

f1(x, a);
f1(x, z);
£2(&z);
—

1. After the first call to f1 we have
10 and a[1] == 3. Notice how an array
has effectively decayed into a pointer. Had
the function been declared like this: void
f1(int x, int y[]), the effect would have
been the same. These two function declara-
tions are equivalent.

X ==

2. After the second call to £1 we have
10, a[2] == 4, while z a+1, i.e. it still
points to the second element of array a. No-
tice how an element of an array is indirectly
changed through the pointer, while the value
of the pointer itself is unchanged on return.

3. After the call to £2, z is changed and equals
a+2. Therefore, after the ——*z statements is
executed, we have a[2] ==

3.2 FUNCTION-CALL MECHANISM. Consider a
function with the prototype int f(int x, int
xy) having two integer local variables a and
b. Suppose that it is called as x = f(z, &c).
Once the frame pointer is set up, arguments
and local variables are at fized offsets with re-
spect to the EBP register. Figure 1 shows stack
layout only for the default case. The layout
can be different, depending on the compiler
options; ~-fomit-frame-pointer is particularly
often used as it frees the EBP register for other
uses. This option makes the code faster, but
also harder to debug.

The reader should distinguish functions from preprocessor macros which don’t really pass arguments, but perform

simple textual substitution.

5 This is somewhat imprecise when multi-dimensional arrays are considered.

~

7 «—— EBP+8

ret [«——— ESP after call
ebple—— EBP+0

a |«——— EBP-4

b —— ESP after alloc

lower addresses

<

Figure 1 Stack diagram after execut-
ing the function prologue. Each “cell”
is exactly 4 bytes (32 bits).

The caller pushes arguments in right to left or-
der, and must clean them up after the function
returns. The return address is automatically
pushed by call and popped by ret instruc-
tions. Also, the called function must not modify
certain registers.

4 Pointers.

Processors generally do not distinguish between
integers and pointers. Interpretation of the reg-
ister content depends on the instruction. In or-
der to ease programming , integers and pointers
are distinct data types in C. Do not convert be-
tween pointers and integers; always use point-
ers to access memory. Doing so has at least two
benefits: (1) enhanced error checking, and (2)
automatic pointer arithmetic.

4.1 Voidb POINTER. In C, all pointers are
implicitly convertible to an untyped pointer,
void* and vice-versa. Explicit casts are nei-
ther needed nor desired. This esp. applies to
storing the result of malloc. Pointer of type
void* cannot be dereferenced.

4.2 RAW MEMORY. If you need to access a
portion of memory as a raw sequence of bytes,

use char* or unsigned char* pointers.®

4.3 Size OF CHAR. The C standard guaran-

tees that sizeof (char) == sizeof (unsigned
char) == 1, soexpression like 16*sizeof (char)
unnecessarily clutters the code as it always
equals 16.

4.4 INTEGER TYPES. When you must resort
to conversion between pointers and integers, al-
ways use unsigned integer types. Otherwise,
strange bugs can happen due to arithmetic sign-
extensions. The recommended type to use is
uintptr_t, defined in <stdint.h> when avail-
able.” Otherwise, the size t type should be
used. Both types are unsigned.

4.5 INITIALIZATION TO FIXED ADDRESS. Some-
times, a pointer has to be initialized to a specific
memory location. This is often the case when a
program needs access to memory-mapped hard-
ware registers.

EXAMPLE: ACCESSING VIDEO MEMORY. The
video memory starts at the physical address
0xB8000, and is organized as a row-major array
of pairs of bytes (16 bits) for one character. The
bytes at even addresses specify characters, and
bytes at odd addresses specify their attributes,
e.g. color.

In this case a program might use the following
definition:

unsigned short *videomem =
(unsigned short*)0xB8000

4.6 ALIGNMENT. We say that the pointer is
aligned to the boundary of n if its value is divis-
ible by n. In almost all cases, n is a power of
two.® For example, page tables on the x86 ar-
chitecture must be aligned to the boundary of
212 = 4096 bytes. Since C does not allow bit op-
erations on pointers, we must convert between
pointers and integers.

The following functions align the pointer p to
the next higher or lower address which is a mul-

The difference between signed and unsigned integer types is not discussed here.

This type is guaranteed to be large enough to store the value of a pointer without loss of information, whether it is a
32- or 64-bit architecture. This is a C99 feature, implemented by gcc, but might not be available in other compilers.
Many RISC processors can perform only aligned loads from memory and throw exception when an unaligned load

is attempted.

tiple of 2™. If the pointer is already aligned, it
is left unchanged.

void *ptr_align_down(void *p, unsigned n)
{

uintptr_t pi = (uintptr_t)p;

uintptr_t mask = (1 << n) - 1;

return (void*) (pi & “mask);

}

void *ptr_align_up(void *p, unsigned n)
{
uintptr_t pi = (uintptr_t)p;
uintptr_t mask = (1 << n) - 1;
return (void*) ((pi+mask) & “mask);

}

When the pointer is obtained as a result of
malloc, it must be aligned to higher address.
Aligning to lower address would corrupt mal-
loc internal structures. You also have to allo-
cate 2" — 1 extra bytes so that you don’t access
memory outside of the allocated block. When
freeing, you must pass the original address re-
turned by malloc to the free function , and
not the aligned one.

5 Bit-fields

This is a feature of C which seems quite conve-
nient to use for interfacing to hardware. Their
main disadvantage is that they cannot be reli-
ably used to write portable code, or to access
hardware.

EXAMPLE: PITFALLS OF BIT-FIELDS. In order
to access individual fields within an x86 page
table entry, one may be tempted to declare a
structure similar to the following:

struct pte {
unsigned pba:20;
unsigned avl:3;
/* etc... x/

};

This code might not work, depending on the
compiler. Namely, the C standard does not
mandate how the bits within a bit-field are allo-
cated. The pba field might get assigned to the

9 The array is said to decay into a pointer.

highest 20 bits, or to the lowest 20 bits of an un-
signed int. The latter case does not conform
to the PTE format expected by the CPU. When
a strict bit-layout and cross-platform compati-
bility is needed, it is recommended not to use
this feature and to manually manipulate the
bits within a word.

Simple data structures

The following sections present data structures
that are needed in coding assignments. You are
allowed (and we recommend you!) to use and
adapt code presented here for your own purpos-
es.

An aggravating circumstance is that dynam-
ic memory allocation routines (malloc() and
others) are not available. Therefore, all memo-
ry must be allocated at statically, compile-time.
One consequence of static memory allocation is
that data structures cannot grow beyond a fixed
number of elements which is predetermined at
compile-time.

6 Arrays

Arrays store their elements consecutively in
memory. An array holding N elements of type T
is declared as T arr[N]. Array indices start at 0
and extend up to and including N-1. Accessing
an array outside of its bounds is an unchecked
error and more often than not it leads to prob-
lems that are extremely difficult to debug.

6.1 ARRAYS AND POINTERS. The array name
itself is a pointer to the first element of the ar-
ray.? Pointers themselves can be indexed. In
fact, the indexing operator is just syntactic sug-
ar, and the expression arr[i] is equivalent to
*(arr+i). However, the code in function f1 is
invalid because the pointer p is not initialized
to valid memory.

void f1(void)

{
unsigned int *p;
pl3] = 0;

}

6.2 AUTOMATIC ARRAYS. Care has to be
taken when declaring arrays within a function
without the static storage specifier, like in
function £2.

void f2(void)
{

unsigned int arr[512];

/* some code */

}

Such declaration uses stack space that is auto-
matically allocated on function entry and deal-
located on function exit. In this example, it
amounts to 512 * sizeof (int) bytes, or 2kB
given the usual size of 4 bytes for int. When
the available stack space is very limited, it is
easily overflown if large automatic arrays are
used. There are no checks and in the case of
overflow, some other data will be overwritten.
Again, this leads to very hard to find and debug
problems. FEzxercise: design an efficient way to
detect stack overflows.

7 Ring buffer

This is a data structure that supports storage
and retrieval of bytes in FIFO manner. The to-
tal amount of data that can be stored is prede-
termined. Here is presented an implementation
by circular buffer.

7.1 TYPES. The ringbuf t structure in-
cludes basic fields needed to have a functional
ring buffer. The ring buffer is empty when rb-
>head == rb->tail. Therefore, the ring buffer
can hold at most MAX_SIZE - 1 bytes.

struct ringbuf_t {

unsigned int head, tail;
unsigned char buffer[MAX_SIZE];
};

Elements are consumed from the head, and

added to the tail of the buffer.

7.2 STORING/RETRIEVING BYTES. rb_getchar
reads a single byte from the ring buffer rb. It re-
turns -1 if the ring buffer is empty, otherwise an
integer in range 0-255 is returned. rb_putchar
stores a single byte b in the ring buffer rb. It
returns -1 if the ring buffer is full, and 0 other-
wise.

int rb_getchar(struct ringbuf_t *rb)
{
if (rb->head == rb->tail)
return -1;
rb->head = (rb->head+1) % MAX_SIZE;
return rb->buffer[rb->head];
}

int rb_putchar(
struct ringbuf_t *rb, unsigned char b);

Exercise: Implement the rb_putchar function
according to the given specification and pro-
totype. Note that this is an “inverse” of
rb_getchar, so use that function as a hint.

7.3 LARGER OBJECTS. Larger objects can
be stored and retrieved with the following func-
tions:

int rb_write(

struct ringbuf_t *rb, void *obj, size_t len);
int rb_read(

struct ringbuf_t *rb, void *obj, size_t len);

where obj points to the object and len is the
length of the buffer. The rb write function
tries to write len bytes in the ring buffer; it re-
turns 0 on success and -1 if there is not enough
space. The rb_read function tries to read up
to len bytes from the ring buffer and returns
the actual number of bytes read, which can be
smaller than len. It should return -1 if the
ring buffer is empty. Ezercise: implement these
functions using rb_getchar and rb_putchar.

8 Linked lists

There are many variants of linked lists. It is
most convenient to use a circular, doubly-linked
with a dummy node. The dummy node does-

10 The do

n’t contain any useful data; its only purpose is
to prevent the list from ever becoming empty.
This greatly simplifies the code since it elim-
inates many special cases in insertion and re-
moval code. The macros are given below.*®

#define LINK_NEXT(node, newnode) \
do { \
(newnode)->prev = node; \
(newnode)->next = (node)->next; \
(node) ->next->prev = newnode; \
(node)->next = newnode; \

} while(0)
#define LINK_PREV(node, newnode) \
do { \
(newnode)->next = node; \
(newnode)->prev = (node)->prev; \
(node) ->prev->next = newnode; \
(node)->prev = newnode; \

} while(0)

#define LINK_REMOVE(node) \
do { \
(node)->prev->next = (node)->next; \
(node)->next->prev = (node)->prev; \

(node)->next = (node)->prev = NULL; \
} while(0)
#define QUE_IS_EMPTY(head) \
((head) == (head)->next)
#define QUE_INIT(head, dummy) \
do { \
head = dqummy; \
(head)->next = (head)->prev = head; \
} while(0)

An advantage of using macros is that they are
untyped: they can be used on any structure
which defines prev and next fields as pointers.

8.1 EmPTY LIST. The list is empty when it
contains only the dummy node. This situation
is depicted in Figure 2, and justifies the im-
plementation of QUE_IS_EMPTY and QUE_INIT
mMacros.

g

0
G

Figure 2 Empty list

EXAMPLE: POPULATING A LIST. The queue of
tasks can be represented by a static array of
task structures:

struct task {
/* task data */
struct task *next,
} tasks[16];

*prev;

Note the addition of link fields in the structure.
The following sequence of operations

/* initialize dummy node */
struct task *head;
QUE_INIT(head, &tasks[0]);

/* insert some nodes */

LINK_PREV(head, &task[1]);
LINK_PREV(head, &task[2]);
LINK_NEXT(head, &task[3]);

results with the list shown in Figure 3. FEz-
ercise: The figure shows the final state of the
list. Draw the whole list after each individual
msertion.

'P'I

Figure 3 Populated list

8.2 REMOVAL FROM A LIST. To remove a
node, invoke the LINK_REMOVE macro on it. The
node is not deallocated, it is just removed from
the list. FEzxercise: what happens when you re-
move the dummy node when the list is not emp-
ty? And when it is empty?

while(0) idiom enables macros to be used (almost) as functions.

11

12

8.3 TRAVERSING A LIST. The dummy node
is not used to store information; otherwise it
wouldn’t be possible to distinguish between
an empty list and list with one data element.
Therefore the traversal starts from head->next,
and is done when the dummy node is encoun-
tered again. The loop should not be executed
at all if the list is empty (i.e. contains only the
dummy node). This code illustrates a possible
way to accomplish the task:

struct task *t;

for(t = head->next; t != head; t =
/*x ... %/

}

t->next) {

Ezercise: How to delete (in a safe way) the cur-
rent element t while traversing the list?

0 Bit-vector

This is a data-structure in which individual bits
can be addressed. It is usually implemented
as an array of unsigned integers; for example
this is an adequate definition of bit-vector hold-
ing up to 8 * 32 = 256 bits:'* unsigned char
bits[32];

9.1 ADDRESSING BITS IN AN INTEGER. The
following macros can be used to test, clear and
set individual bit n within an integer w. The
argument n should be in the range from 0 to
one less the number of bits used for w ([0, 7] if
w is unsigned char).'®? n = 0 operates on the
least-significant bit.

#define
#define
#define
#define

BITMASK (n) (1U << (n))

TESTBITw(w, n) ((w) & BITMASK(n))
CLEARBITw(w, n) ((w) &= “BITMASK(n))
SETBITw(w, n) ((w) |= BITMASK(n))

These macros modify in place their first argu-
ment. The key to understanding them is to no-
tice that the BITMASK (n) macro evaluates to an
unsigned integer having just the n-th bit set.

9.2 ADDRESSING BITS IN A BIT VECTOR. The
goal is to make macros TESTBIT(v, n), etc.,
which work for the general case, where v is an
array of integers, and n is a bit index within the
bounds of an array. n is allowed to be larger
than the number of bits in an integer. Ezercise:
Using macros TESTBITw, etc., code the macros
which work for the general case. Hint: you will
need to use / and J operators.

Assembler

The following section discuss topics related to
the use of assembly language in the assignments.

10 Inline assembler

Mixing assembly with C code is strongly dis-
couraged, since it makes it easy to make mis-
takes. Such code is also very hard to read.

EXAMPLE. Function clear_bit is supposed to
clear the b’th bit of n and return the result.
Inline assembler implementation uses the btr
instruction to accomplish the task:

unsigned clearbit(unsigned n, int b)
{

unsigned r;

asm("btrl %1, %0" : "+r" (m) : "r" (b));
return r;

}

Ezxercise: The above function has deliberately

been implemented incorrectly. Can you fix it?
Compare it with the following pure C function;
which one do you find easier to understand and
see that it is correct?

unsigned clearbit(unsigned n, int b)

{
return n & “BITMASK(Db);
}

Here we quietly assume that unsigned char has 8 bits. This need not be the case; the actual size is given by the

CHAR_BITS constant.
char is also an integer type.

13

11 Memory operands.

Almost all x86 instructions accept memory
operands. Exploiting these instructions can
make the code much cleaner and easier to read,
as illustrated in the following code snippets.

11.1 READ-MODIFY-WRITE INSTRUCTIONS. The

following problem is needed in the context
switching code in one of the assignments. The
task is to exchange the Jesp register with a
memory location named stored_esp. No other
registers may be changed. The %esp is chosen
on purpose so that the stack itself can’t be used
as a temporary storage.

The following code fragment uses only memory
load and store instructions.

movl
movl
movl
movl
movl

%eax, temp_eax
%hesp, heax
stored_esp, %esp
%eax, stored_esp
temp_eax, %eax

There are many disadvantages in this approach:
(1) it uses an extra register and memory loca-
tion, (2) it is non-atomic, and (3) it is non-
reentrant. Non-reentrancy manifests itself in
that fixed memory locations are used for tempo-
rary storage. Fxercise: consider what happens
if the fragment is preempted and executed again
from another thread, or when executed in par-
allel on an SMP system. Design a solution to
this problem.

The next fragment accomplishes the task in a
straightforward way by using the xchgl instruc-
tion with a memory operand.

xchgl %esp, stored_esp
This approach has the following advantages: (1)
it is easier to read and understand, (2) it is

shorter and faster,'® and (3) it is atomic.

11.2 A NOTE ON SMP SYSTEMS. To
guarantee atomicity of read-modify-write in-

structions on an SMP system, the lock pre-
fix must be used; for example lock; xchgl
hesp, stored esp. Another consideration are
CLI/STI instructions. They disable/enable in-
terrupts only on the CPU which executes them
— they have no effect on other CPUs. Thus,
they cannot be used to implement critical sec-
tions on SMP systems.

11.3 SAVING MEMORY OPERANDS TO THE
STACK. The following is a possible solution
to save and restore the contents of memory lo-
cation var_a to the stack:

/* save var_a on the stack */
movl var_a, %eax
pushl %eax

/* restore var_a from the stack */
popl %eax
movl %eax, var_a

The simpler and recommended way is to do it
directly:

pushl var_a /* save var_a */
popl var_a /* restore var_a */

EXAMPLE: PUSHING CONSTANTS TO THE
STACK. Always write pushl $1 instead of
movl $1, %eax ; pushl %eax . The $ is part
of the AT&T syntax and is mandatory before
an immediate constant.

12 Literature

When some issue is commented in the footnote,
this is a signal to the reader that more exten-
sive discussion can be found in the literature.
The following resources cover issues mentioned
here (and many others) in much more detail.
Note that they are not obligatory reading for
the course. They are an excellent reading if you
want to gain an in-depth knowledge of system
programming. When in doubt about some is-
sue, it is most convenient to consult the C FAQ
first.

Read-modify-write instructions having memory operands are one of rare cases where clarity also yields better

performance; at least on the x86 architecture.

1. C Frequently Asked Questions.

http://www.c-faq.com

. Brian W. Kernighan and Dennis M. Ritchie:
The C programming language. Prentice
Hall, Inc., 1988. ISBN 0-13-110362-8 (pa-
perback), 0-13-110370-9 (hardback).
http://cm.bell-labs.com/cm/cs/cbook

3. Peter van der Linden: Expert C Program-

10

. John R. Levine:

ming, Deep C Secrets. Pearson Education,
1994. ISBN 0131774298.
http://www.taclug.org/booklist/devel-
opment/C/Deep_C_Secrets.html

Linkers and Loaders.
Morgan-Kauffman, 1999. ISBN 1-55860-
496-0.

http://www.iecc.com/linker

	Introduction
	Variables
	Static variables
	Automatic variables
	Storage allocation.
	Recursive functions.
	lifetime.

	Calling convention
	Function-call semantics.
	Function-call mechanism.

	Pointers.
	Void pointer.
	Raw memory.
	Size of char.
	Integer types.
	Initialization to fixed address.
	Alignment.

	Bit-fields
	Arrays
	Arrays and pointers.
	Automatic arrays.

	Ring buffer
	Types.
	Storing/retrieving bytes.
	Larger objects.

	Linked lists
	Empty list.
	Removal from a list.
	Traversing a list.

	Bit-vector
	Addressing bits in an integer.
	Addressing bits in a bit vector.

	Inline assembler
	Memory operands.
	Read-modify-write instructions.
	A note on SMP systems.
	Saving memory operands to the stack.

	Literature

